

Outline of the Lecture
$>$ Image Processing Toolbox (IPT--Matlab).
$>$ Reading Images.
$>$ Displaying Images

## Image Processing Toolbox (IPT)

 (Matlab)- IPT is a collection of functions that extend the capability of the Matlab numeric computing environment and support a wide range of image processing including:
- Spatial image transformation.
- Morphological operations.
- Neighborhood and block operations
- Linear filtering and filter design.
- Transform.
- Image enhancement and analysis.
- Deblurring.
- Region of interest operations.

Coordinate Conventions:

- The result of sampling and quantization is a matrix of real numbers; two ways are used to represent the digital image:
- First convention: this convention is frequently used in image processing books, in which,
$\checkmark$ The image origin is defined to be at $(x, y)=(0,0)$, the next coordinate value along the first row of the image is $(x, y)=(0,1)$.
$\checkmark \quad x$ ranges from 0 to $M-1$ and $y$ ranges from 0 to $N-1$ in integer increment.
- Second convention: this convention is used in IPT Matlab toolbox, the notation ( $r, c$ ) to indicate rows and columns.
$\checkmark$ The origin of the coordinate system is at $(r, c)=(1,1)$.
$\checkmark \quad r$ ranges from 1 to $M$ and $c$ ranges from 1 to $N$ in integer increment.
- IPT documentation refers to the coordinates as pixel coordinates or spatial coordinates.

Matrix notation of the digital image:

- Representations of digital image functions:

1. Image processing books matrix representation.

$$
f(x, y)=\left[\begin{array}{cccc}
f(0,0) & f(0,1) & \ldots & f(0, N-1) \\
f(1,0) & f(1,1) & \ldots & f(1, N-1) \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
f(M-1,0) & f(M-1,1) & \ldots & f(M-1, N-1)
\end{array}\right]
$$


2. Matlab matrix representation

$$
f(r, c)=\left[\begin{array}{lclc}
f(1,1) & f(1,2) & \ldots & f(1, N) \\
f(2,1) & f(2,2) & \ldots & f(2, N) \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
f(M, 1) & f(M, 2) & \ldots & f(M, N)
\end{array}\right]
$$

- The two representations are equal except for the shift in origin.
- The notation $f(p, q)$ denotes the element located in row $p$ and column $q$.
- $1 \times N$ matrix is called a row vector.
- $M \times 1$ matrix is called a column vector.
- $1 \times 1$ matrix is scalar.



## Reading Images

- To read an image, use the imread command, whose syntax is:
I = imread ('filename')
- This command reads and stores the image in an array I.
'filename'- string containing the complete name (path) of the image file including extension.


## Example:

>> f= imread('chestxray.jpg');
reads the jpg image "chestxray" into image array.
>> I= imread (pout.tif');
reads and stores the image in an array I.
whos command:

- whos command is used to get information about variable in the workspace.


## >> whos

| Name | Size | Bytes | Class | Attributes |
| :---: | :---: | :---: | :---: | :---: |
| I | $291 x 240$ | 69840 | uint8 | -------- |

size command:

- Function size gives the row and column dimensions of an image:
>> size(f);
ans $=$
10241024
>> [M , N] = size(f);
- This syntax returns the number of rows $(\mathrm{M})$ and the number of columns $(\mathrm{N})$ in the image.
- The following table summarizes some ways to get information about an image. These are not specific to the Image Processing Toolbox.

| Command | Description |
| :--- | :--- |
| whos | To get information about size, type, and bytes, of all variables. |
| whos I | For information about an image stored in I. |
| size (I) | To get the size of the image stored in I. |
| class (I) | To get type of data stored in I |

## Displaying Images

- To display an image, the imshow function is used, which has the basic syntax:
a) imshow (f,G)
$f$ - an image, G- the number of intensity levels used to display the image, if $\mathbf{G}$ is omitted, it defaults to $\mathbf{2 5 6}$ levels.
b) imshow (f, [low high])
$\checkmark$ Displays as black all values less than or equal to low.
$\checkmark$ Displays as white all values greater than or equal to high.
$\checkmark$ The values in between are displayed using the default number of levels.
c) imshow (f , [ ])
$\checkmark$ Sets variable low to the minimum value of array $f$ and high to its maximum value. This form is useful for images with low dynamic range.


## pixval command :

- Pixval is used to display the intensity values of individual pixel interactively: Moving the cursor, the coordinates of the cursor position and the corresponding intensity values are shown.
- Pixval displays Red, Green, blue components, when the image is color.
- If the left button on the mouse is clicked and then held pressed, pixval displays the Euclidean distance between the initial and current cursor location, the syntax is:
pixval


## Example 1

>> f = imread ('rose_512.tif'); \% read from disk an image
>> whos $\mathrm{f} \%$ extract basic information about the image
>> imshow (f) \% display the image.

- If another image, g , is displayed using imshow, Matlab replaces the image in the screen with the new image.
>> figure, imshow (g) \% keep the first image and \%output a second image.
>> imshow (f), imshow (g) \% display both images


## Example 2

- Suppose that we read an image h and find that using imshow (h) produces the image that has a low dynamic range, to correct:
>> Imshow (h, [ ]) \% improve the image $h$.
- There are a series of photos that come as part of the image processing toolkit. To get the list of images and credits, you can type:
>> help imdemos
- If you want to view any of these photos, you can use the imshow, which opens a separate window displaying the image. For instance:
>> imshow('football.jpg');
>> imshow('coins.png');
>> imshow('autumn.tif');
>> imshow('board.tif');

